Introduction to NIF

Potential applicants to the Discovery Science call for proposals

June 21, 2016

Dan Kalantar and Kevin Fournier
NIF User Office

Outline

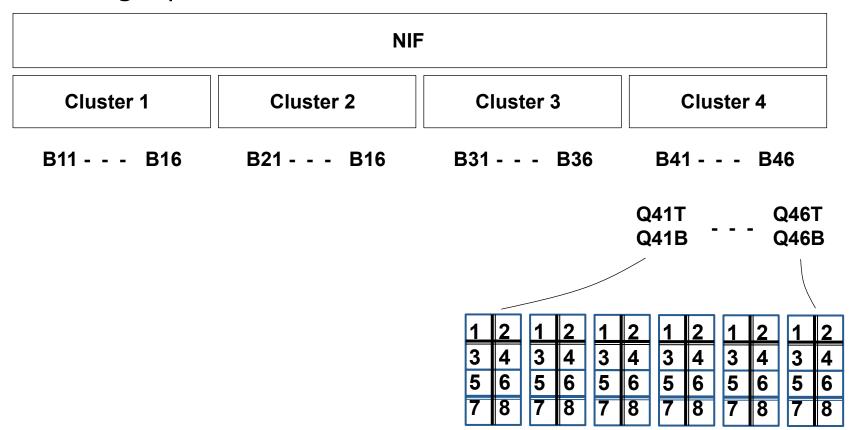
Laser capability

Target fabrication

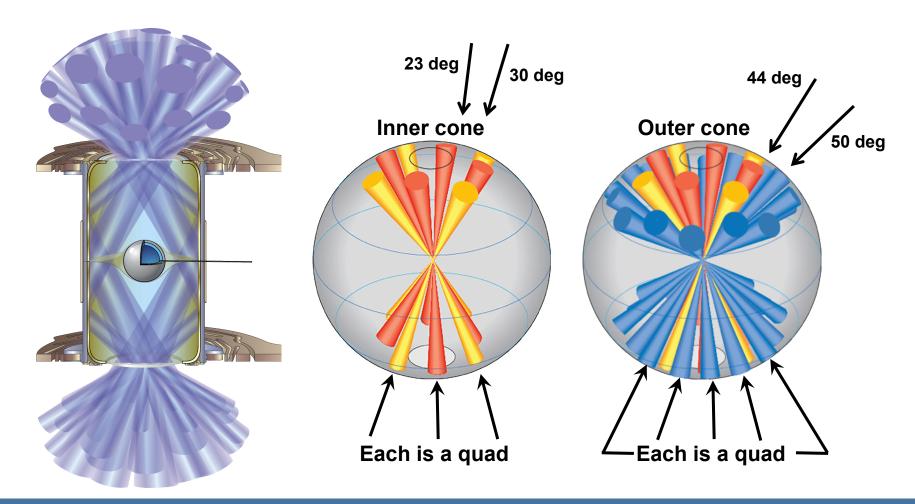
Target diagnostics

Scheduling constraints

NIF is the world's largest, highest-energy, highest-power laser: 1.86MJ — 523TW


Laser performance

- NIF is a 192 beam laser designed to reliably deliver high power and energy to target to enable precision experiments
- Operation of the laser incorporates a living model of individual beam performance that is calibrated and adjusted to predict pulse shape delivery on individual shots to meet power balance and accuracy requirements
- Expert groups maintain reliable operation of the laser through review, planning and tracking of experiment impacts (machine safety) and performance
- NIF has a strategy of optics inspection and maintenance that allows it to operate "above the damage threshold" in a sustainable manner
- Operating below the damage threshold allows for more routine operation with a rapid shot cycle

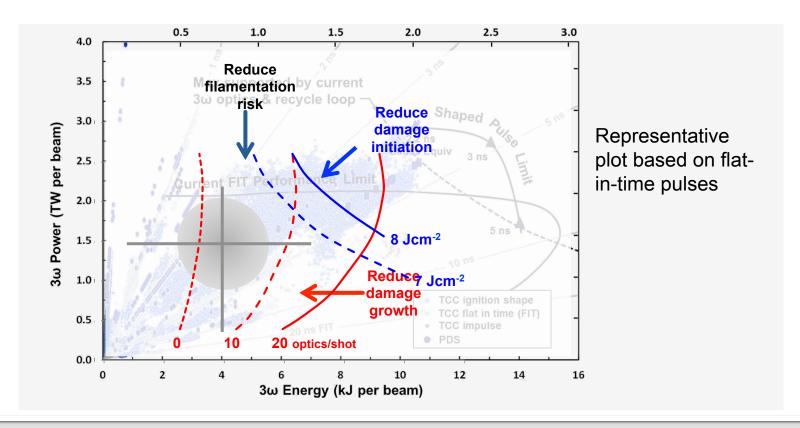


Configuration

- NIF beams are grouped as clusters, bundles, quads, and beams
- Pulse shape, and timing are per quad, but timing with bundle limitations
- Energy is per beam, but with bundle limitations
- Pointing is per beam

The beams are grouped in inner and outer cones distinguished by polar angle

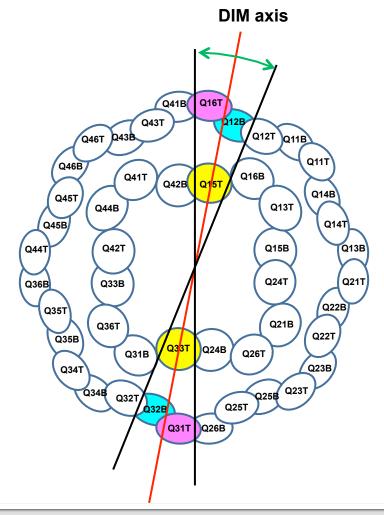
Groups of 4 beams (Quads) share some hardware and pulse shape capability → NIF is essentially 48 Quads each with 4 Beams



Pulse shape and energy

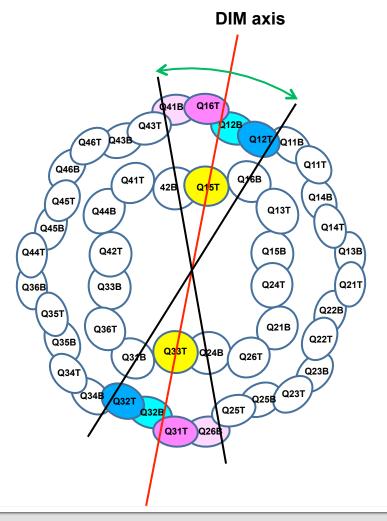
- Pulse shape
 - 88 ps impulse
 - >600 ps shaped pulses
 - 30 ns maximum pulse width
 - 100 ps rise at the beginning/end of the pulse, 600 ps transitions internal to the pulse shape
- Pulse timing
 - Flexible pulse delays but actual ranges depend on energetics and power
 - Generally up to 30 ns delay available
 - Longer delays require fibers additional planning and setup time during the shot
 - Timing is limited between quads in the same bundle
- Energy
 - There are power and energy limits associated with beam filamentation, and optics damage initiation and growth
 - 88 ps is limited to 56 J/beam
 - 3.3 ns square can be used at <4 kJ/beam
 - Shaped ignition pulses can be run at ~4 kJ/beam (800 kJ NIF) with minimal impact

The NIF laser performance limits are driven by optics damage and non-linear effects


- NIF is capable of 1.8 MJ operation with a high-contrast shaped pulse
- Operation at this level exceeds the initiation and damage threshold for the NIF final optics (effectively uses up optics)
- Operation in a moderate power/energy space reduces the impact and allows for more shots

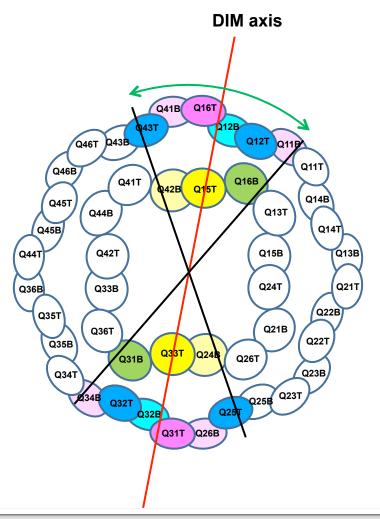
Beam pointing is currently limited to +/- 5 mm left/right and +/- 30 mm

up/down wrt TCC (beam perspective)


- Beam pointing limits affect the achievable standoff for backlighters
- Example: quads available for backlighting along the 90-78 DIM axis:
 - 6 quads can reach 34 mm offset

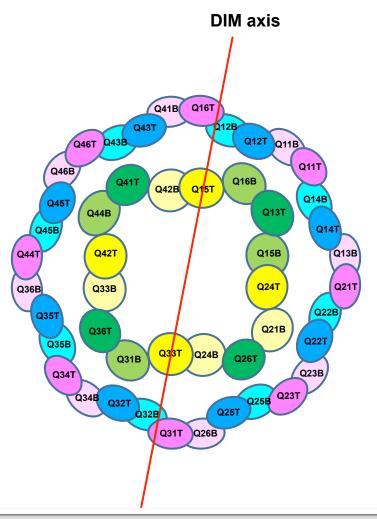
Beam pointing is currently limited to +/- 5 mm left/right and +/- 30 mm

up/down wrt TCC (beam perspective)


- Beam pointing limits affect the achievable standoff for backlighters
- Example: quads available for backlighting along the 90-78 DIM axis:
 - 6 quads can reach 34 mm offset
 - 10 quads can reach 14.9 mm offset

Beam pointing is currently limited to +/- 5 mm left/right and +/- 30 mm

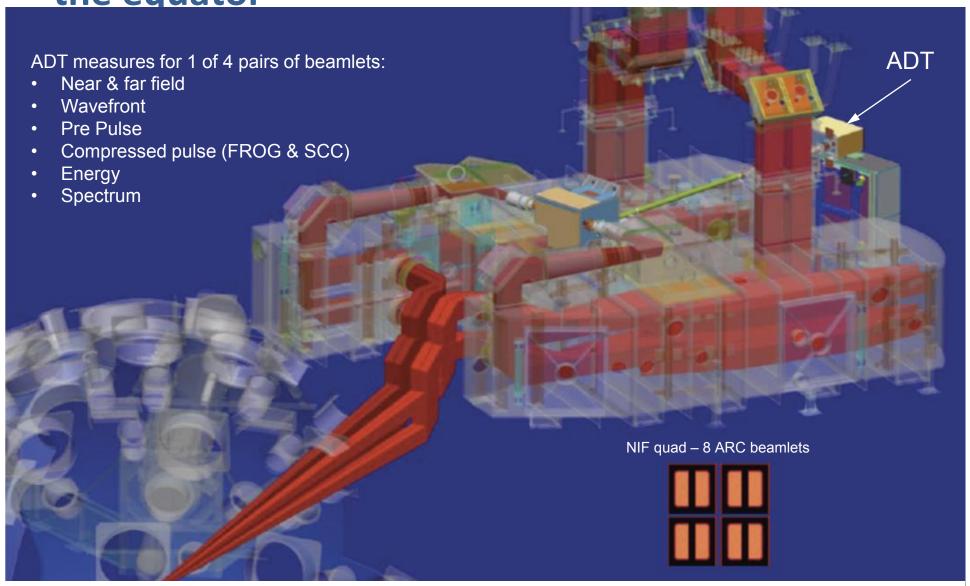
up/down wrt TCC (beam perspective)


- Beam pointing limits affect the achievable standoff for backlighters
- Example: quads available for backlighting along the 90-78 DIM axis:
 - 6 quads can reach 34 mm offset
 - 10 quads can reach 14.9 mm offset
 - 18 quads can reach 9.7 mm offset

Beam pointing is currently limited to +/- 5 mm left/right and +/- 30 mm

up/down wrt TCC (beam perspective)

- Beam pointing limits affect the achievable standoff for backlighters
- Example: quads available for backlighting along the 90-78 DIM axis:
 - 6 quads can reach 34 mm offset
 - 10 quads can reach 14.9 mm offset
 - 18 quads can reach 9.7 mm offset
 - 48 quads can reach 5 mm offset


ARC has been commissioned with 30 ps pulses

- 1 NIF quad (35T) may be used in a short pulse mode (ARC)
 - 2 beams are each split into 2 beamlets
- 30 ps impulse with an expected energy of approximately 1200 J/ beamlet
 - Shorter pulses (expected <3 ps) will be commissioned at lower energies

- Relative beamlet pointing and timing are limited
 - Co-pointing beamlets from the same beamline is ok over the nominal NIF pointing volume

Front end contrast is approximately 80 dB

ARC beams come from port (77, 204) – above the equator

Targets

- Target fabrication support is provided by the LLNL target fab team
 - Target requests in successful proposals will be evaluated in light of current fabrication capability and budget
- Capabilities:
 - Hohlraum
 - Direct drive foils
 - Gas pipes
 - Shock tube

 Targets based on existing experimental platforms will streamline the review process and subsequent fabrication

Target chamber

- The NIF chamber is 10 m in diameter, maintained at high vacuum
- 3 target positioners available:
 - C-TARPOS for cryo-layering, TARPOS with cold capability, TanDM for warm targets only
 - Positioner use may be identified for efficiency and rapid shot turn-around
- 3 DIM lines of sight for insertable diagnostic access to view the target
 - 1 TanDM line of sight provides an optional additional diagnostic location
- Target, diagnostic snouts, and filters are routinely exchanged or refurbished
 on each shot
 - Re-use requires review
- The number of diagnostic transactions between experiments impacts the overall shot cycle duration

Diagnostics

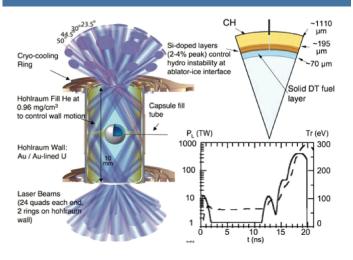
- X-ray
 - Fixed Dante, FFLEX, SXI, DIXI, SPIDER
 - DIM-based streaked and gated imagers with pinhole and spectrometer snouts
 - X-ray bang time
- Optical
 - FABS/NBI
 - VISAR
 - OTS
- Nuclear
 - Yield
 - NToF
 - MRS
 - Neutron imaging
 - Neutron bang time

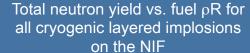
DANTE

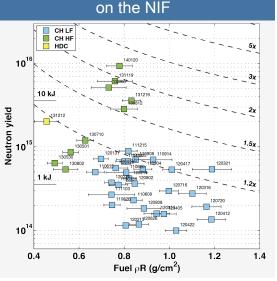
Examples

- Implosion core imaging
 - 12X with 0.25 mm field of view (before overlapping images)
 - 4-7.8X imaging with 1-1.5 mm field of view for in-flight imaging
 - 2X with 3 mm field of view for early-time capsule drive symmetry

- Backlighting
 - 1-4X imaging with larger field of view

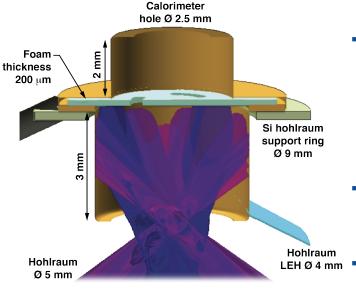

- Spectroscopy
 - Wavelength coverage capability at 0.5-18 keV
 - Energy resolution of E/dE ~ 100-700


Ignition implosion platform

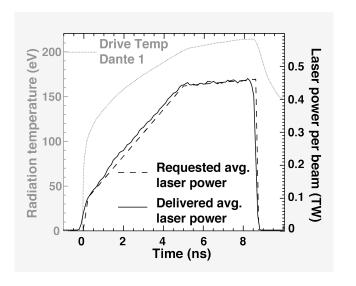

https://lasers.llnl.gov/content/assets/docs/for-users/platforms_indirect_direct_drive.pdf

- Layered DT ignition capsules
 - Contain solid cryogenic DT fuel layers
 - Designed to ignite and burn producing ~10-20 MJ of energy

Schematic of NIF ignition target, capsule and a typical laser pulse (solid line) and resulting simulated X-ray drive (dashed line)

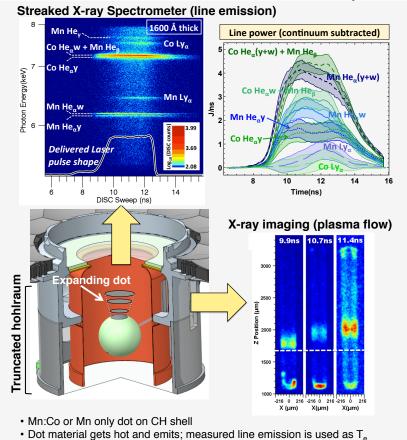

Current conditions achieved

- High $Y_n \sim 10^{14}-10^{16}$
- Rapid burn ~ 50-100 ps
- Burn avg temp ~ 5 keV
- Burn avg density ~150-300 g/cm³


Half-hohlraums

https://lasers.llnl.gov/content/assets/docs/for-users/platforms_half_hohlraum.pdf

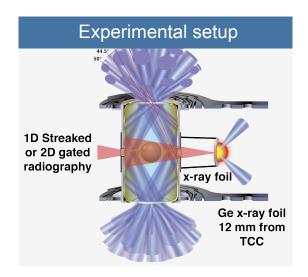
- Half-hohlraum provides capability for radiation driven samples placed on the axis for hydrodynamics and radiation flow experiments
 - Subsonic Radiation Transport
 - Subsonic Radiation Transport experiments study the evolution of an "N-wave" density structure in slots cut into a Ta₂O₅ aerogel

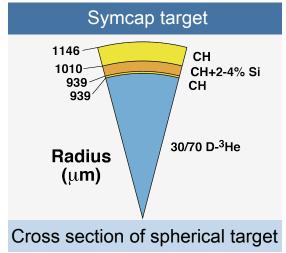


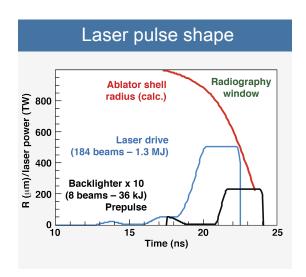
- A large 4.0 mm diameter half-hohlraum, driven by 80 lower quads, creates a power-law-in-time x-ray drive over 9.0-12.0 ns with a 200-240 eV peak temperature
- The x-ray drive launches a shock followed by a subsonic Marshak wave in the aeroge
- Slots machined in the aerogel evolve into an "N-wave" density profile

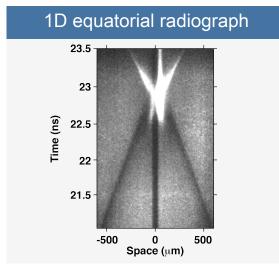
Half-hohlraums – spectroscopy application

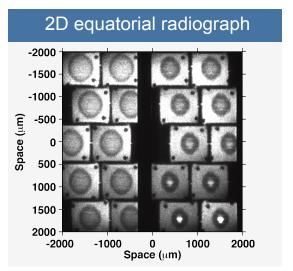
- Multiple lines of sight are available for spectroscopy measurements and x-ray imaging
 - see M. A. Barrios et al., Physics of Plasmas 23, 056307 (2016)

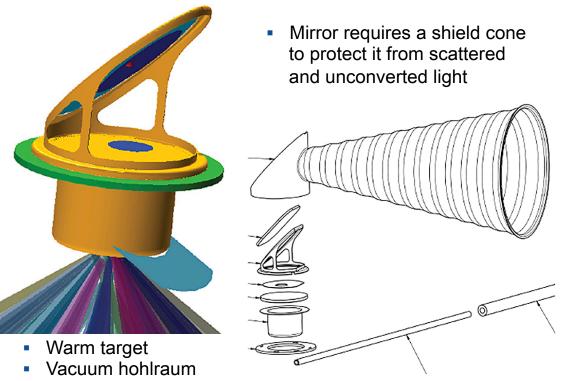


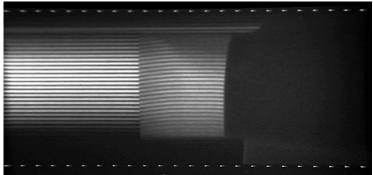

- Local measurements of electron temperature and target expansion
 - Spectroscopic tracers introduced to a capsule; line ratios exhibit strong temperature-dependent trends
 - Imagers through viewing slots allow measurement of plasma flows
- NIF provides a modest set of spectrometers for user experiments
- NIF provides a variety of x-ray imagers, both x-ray framing cameras and streak cameras


· Side slit provides dot trajectory and expansion


Radiography platforms


https://lasers.llnl.gov/content/assets/docs/for-users/platforms horizontal vertical axis radiography.pdf

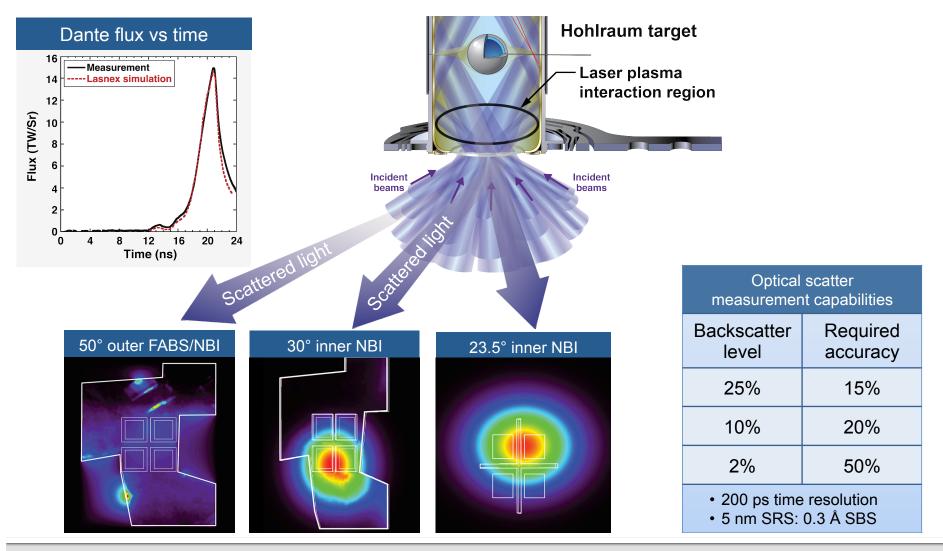




Shock timing and equation of state

https://lasers.llnl.gov/content/assets/docs/for-users/platforms_shock_timing_eos.pdf

- Example shock timing measurement from a planar foil driven by a half hohlraum x-ray drive
 - VISAR view of the target is achieved with a fold mirror mounted on the target



- Compatible with additional x-ray diagnostics
 - Backlit radiography
 - · X-ray Thomson scattering

Laser plasma interactions

https://lasers.llnl.gov/content/assets/docs/for-users/platforms_lpi.pdf

Scheduling

- NIF schedule process
 - Identify a 'train schedule' based on common diagnostic configurations
 - Assign campaigns and shots into the schedule based on the assigned configuration
- Successful proposals will be awarded time
- Allocation of time may be effectively used by matching existing configurations and minimizing CPP transactions and red-line laser performance requirements
 - Typical shot cycle today is 8-12 hrs
- Requirements for new capabilities drives scheduling
 - There is a separate process to propose new major capabilities
 - Engineering to support new capability must be coordinated with facility scheduling
- There is a minimum set of information to assess and schedule experiments
 - Energy/ peak power/ lines of sight/ cryo vs warm/ CPPs/ diagnostic selection

Other constraints and comments

Configuration

 Unconverted light has to be managed to prevent reflections from flat target surfaces that could damage the laser

Review process

 There is a detailed review process to ensure that experiments can be safely executed

Resources (<u>https://lasers.llnl.gov/for-users</u>)

- Once a campaign is approved and allocated time on NIF we provide assistance through the NIF User Office
 - NIF User guide, shot RI training, points of contact list, other documentation
 - · Liaison scientist if requested
 - Project engineer to facilitate readiness
 - Senior scientist technical support

